首页> 外文期刊>Computing >Regularized greedy algorithms for network training with data noise
【24h】

Regularized greedy algorithms for network training with data noise

机译:具有数据噪声的网络训练的正则贪婪算法

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to construct a modified greedy algorithm applicable for an ill-posed function approximation problem in presence of data noise. We provide a detailed convergence analysis of the algorithm in presence of noise, and discuss the choice of the iteration parameters. This yields a stopping rule for which the corresponding algorithm is a regularization method with convergence rates in L-2 and under weak additional assumptions also in Sobolev-spaces of positive order.Finally, we discuss the application of the modified greedy algorithm to sigmoidal neural networks and radial basis functions, and supplement the theoretical results by numerical experiments.
机译:本文的目的是构建一种适用于存在数据噪声的不适定函数逼近问题的改进贪婪算法。我们提供了存在噪声时对该算法的详细收敛分析,并讨论了迭代参数的选择。这产生了一个停止规则,对于该规则,相应的算法是一个正则化方法,在L-2上并且在弱附加假设下也在正序的Sobolev空间中也具有收敛速度。最后,我们讨论了改进的贪婪算法在S型神经网络中的应用和径向基函数,并通过数值实验补充理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号