首页> 外文期刊>Computing supplementum >Error Estimation For Bregman Iterations And Inverse Scale Space Methods In Image Restoration
【24h】

Error Estimation For Bregman Iterations And Inverse Scale Space Methods In Image Restoration

机译:图像复原中Bregman迭代的误差估计和逆尺度空间方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider error estimation for image restoration problems based on generalized Bregman distances. This error estimation technique has been used to derive convergence rates of variational regularization schemes for linear and nonlinear inverse problems by the authors before (cf. Burger in Inverse Prob 20: 1411-1421, 2004; Resmerita in Inverse Prob 21: 1303-1314, 2005; Inverse Prob 22: 801-814, 2006), but so far it was not applied to image restoration in a systematic way. Due to the flexibility of the Bregman distances, this approach is particularly attractive for imaging tasks, where often singular energies (non-differentiable, not strictly convex) are used to achieve certain tasks such as preservation of edges. Besides the discussion of the variational image restoration schemes, our main goal in this paper is to extend the error estimation approach to iterative regularization schemes (and time-continuous flows) that have emerged recently as multiscale restoration techniques and could improve some shortcomings of the variational schemes. We derive error estimates between the iterates and the exact image both in the case of clean and noisy data, the latter also giving indications on the choice of termination criteria. The error estimates are applied to various image restoration approaches such as denoising and decomposition by total variation and wavelet methods. We shall see that interesting results for various restoration approaches can be deduced from our general results by just exploring the structure of subgradients.
机译:在本文中,我们考虑基于广义Bregman距离的图像恢复问题的误差估计。以前,作者已经使用这种误差估算技术来推导线性和非线性逆问题的变分正则化方案的收敛速度(参见Burger in Inverse Prob 20:1411-1421,2004; Resmerita in Inverse Prob 21:1303-1314, 2005; Inverse Prob 22:801-814,2006),但到目前为止,它还没有系统地应用于图像恢复。由于布雷格曼距离的灵活性,这种方法对于成像任务特别有吸引力,在成像任务中,通常使用奇异能量(不可微,不是严格凸的)来完成某些任务,例如保留边缘。除了讨论变分图像恢复方案外,我们的主要目标是将误差估计方法扩展到最近作为多尺度恢复技术出现的迭代正则化方案(和时间连续流),并可以改善变分图像的一些缺点。计划。在干净和嘈杂的数据的情况下,我们得出迭代图像和精确图像之间的误差估计,后者也为终止标准的选择提供了指示。误差估计被应用于各种图像恢复方法,例如通过总变化和小波方法进行降噪和分解。我们将看到,仅通过研究次梯度的结构,就可以从我们的总体结果中得出各种恢复方法的有趣结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号