首页> 外文期刊>Computers & Structures >Multi-moment finite volume method for incompressible flows on unstructured moving grids and its application to fluid-rigid body interactions
【24h】

Multi-moment finite volume method for incompressible flows on unstructured moving grids and its application to fluid-rigid body interactions

机译:非结构运动网格上不可压缩流动的多矩有限体积法及其在流固耦合中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multi-moment finite volume method for unsteady incompressible flows on unstructured moving grids is developed under the Arbitrary Lagrangian Eulerian (ALE) framework. Two moments, volume integrated average (VIA) and point values (PV), are treated as computational variables which allow to construct quadratic or higher-order polynomials within a compact stencil. The VIAs are computed by a finite volume method (FVM) that ensures the rigorous numerical conservativeness, while the PVs are defined at cell vertices and updated efficiently by a formulation based on the governing equations in a differential form. By employing PVs at cell vertices as additional variables updated at each time step, the present multi-moment finite volume method shows great advantage when applied to the ALE framework for interactions among multiple materials, where the solution points can always coincide with the interfaces between different materials. Thus, any extra numerical step to approximate the values onto the interfaces is not necessary. We have devised two coupling schemes, i.e. an explicit weak coupling scheme and a semi-implicit strong coupling scheme, to formulate the interactions between fluid and moving solid with a wide range of mass ratios. An accurate and robust fluid-solid interaction (FSI) solver has been built by integrating the above numerical components with a radial basis function (RBF) interpolation technique for mesh movement. We in this paper present various benchmark tests to extensively verify the proposed numerical solver, which demonstrate its appealing performance in solving a large class of FSI problems. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在任意拉格朗日欧拉(ALE)框架下,开发了用于非结构化运动网格上非恒定不可压缩流动的多矩有限体积方法。体积积分平均值(VIA)和点值(PV)这两个矩被视为计算变量,可以在紧凑的模具中构造二次或更高阶多项式。通过有限体积方法(FVM)计算VIA,该方法可确保严格的数值保守性,而PV在单元顶点处定义,并通过基于微分形式的控制方程的公式有效地更新。通过将单元顶点处的PV用作在每个时间步更新的附加变量,当将多点有限体积方法应用于ALE框架进行多种材料之间的相互作用时,本方法具有很大的优势,其中求解点始终可以与不同材料之间的界面重合材料。因此,不需要任何额外的数值步骤来将值近似到界面上。我们设计了两种耦合方案,即显式弱耦合方案和半隐式强耦合方案,以宽范围的质量比来表达流体与运动固体之间的相互作用。通过将上述数值分量与径向基函数(RBF)插值技术集成在一起,可以构建精确而鲁棒的流固相互作用(FSI)解算器。我们在本文中提出了各种基准测试,以广泛地验证所提出的数值求解器,从而证明其在解决大量FSI问题方面的出色性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号