首页> 外文期刊>Computers & Structures >Multi-moment finite volume method for incompressible flows on unstructured moving grids and its application to fluid-rigid body interactions
【24h】

Multi-moment finite volume method for incompressible flows on unstructured moving grids and its application to fluid-rigid body interactions

机译:对非结构移动电网上的不可压缩流动的多立体有限体积法及其在流体 - 刚体相互作用中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multi-moment finite volume method for unsteady incompressible flows on unstructured moving grids is developed under the Arbitrary Lagrangian Eulerian (ALE) framework. Two moments, volume integrated average (VIA) and point values (PV), are treated as computational variables which allow to construct quadratic or higher-order polynomials within a compact stencil. The VIAs are computed by a finite volume method (FVM) that ensures the rigorous numerical conservativeness, while the PVs are defined at cell vertices and updated efficiently by a formulation based on the governing equations in a differential form. By employing PVs at cell vertices as additional variables updated at each time step, the present multi-moment finite volume method shows great advantage when applied to the ALE framework for interactions among multiple materials, where the solution points can always coincide with the interfaces between different materials. Thus, any extra numerical step to approximate the values onto the interfaces is not necessary. We have devised two coupling schemes, i.e. an explicit weak coupling scheme and a semi-implicit strong coupling scheme, to formulate the interactions between fluid and moving solid with a wide range of mass ratios. An accurate and robust fluid-solid interaction (FSI) solver has been built by integrating the above numerical components with a radial basis function (RBF) interpolation technique for mesh movement. We in this paper present various benchmark tests to extensively verify the proposed numerical solver, which demonstrate its appealing performance in solving a large class of FSI problems. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在非结构化移动网格上的非稳态不可压缩流量的多立体有限体积方法是在任意拉格朗日欧拉(ALE)框架下开发的。两个矩,体积集成的平均值(通孔)和点值(PV)被视为计算变量,其允许在紧凑的模板内构建二次或高阶多项式。通过有限体积法(FVM)计算通孔,其确保了严格的数值保守性,而PV在电池顶点处定义并通过基于差分形式的控制方程的配方有效地更新。通过在每个时间步骤更新的额外变量的单元顶点处使用PVS时,当应用于多个材料之间的ALE框架时,当前的多时有限体积方法显示出很大的优势,其中解决方案点可以始终与不同之间的接口始终与界面相互作用材料。因此,不需要任何额外的数值步骤,以近似于接口上的值。我们已经设计了两个耦合方案,即显式弱耦合方案和半隐式的强耦合方案,以配制流体之间的相互作用和具有宽范围的质量比。通过将上述数值与径向基函数(RBF)插值技术集成为网状运动,构建了一种精确且坚固的液体固体相互作用(FSI)求解器。我们本文在本文中,各种基准测试,以广泛验证所提出的数值求解器,这展示了解决大量FSI问题的吸引力。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号