首页> 外文期刊>Computers & Structures >Stress-constrained topology optimization based on maximum stress measures
【24h】

Stress-constrained topology optimization based on maximum stress measures

机译:基于最大应力测度的应力约束拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes two effective constraint schemes to address the stress-constrained topology optimization of continuum structures. By considering the maximum stress measure in the global and local forms, respectively, the STM (stability transformation method)-based stress correction scheme and the violated set enhanced stress measure are developed to tackle the challenging issues from numerous local stress constraints and highly nonlinear stress behavior. Particularly, a stress aggregation function is involved in the design sensitivity analysis. Moreover, the nodal variable based SIMP method and adjoint sensitivity analysis are employed to solve the optimum topological design problems with two different optimization formulations. Finally, several representative examples demonstrate the validity of the present approach. It is also indicated that the numerical performance of the stress aggregation function is closely related to the problem formulation of topology optimization. The STM-based stress correction scheme is appropriate to the material volume minimization design, while the violated set enhanced stress measure is suitable for the mean compliance minimization design. Meanwhile, the proposed optimization approach can handle the stress-constrained topology optimization with easy implementation, low computational cost and stable convergence. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文提出了两个有效的约束方案,以解决连续结构应力约束的拓扑优化问题。通过分别考虑整体和局部形式的最大应力测度,开发了基于STM(稳定性转换方法)的应力校正方案和违反集的增强应力测度,以解决来自众多局部应力约束和高度非线性应力的难题行为。特别地,应力聚集函数参与设计敏感性分析。此外,基于节点变量的SIMP方法和伴随灵敏度分析被用来解决具有两种不同优化公式的最优拓扑设计问题。最后,几个代表性的例子证明了本方法的有效性。还表明,应力聚集函数的数值性能与拓扑优化的问题公式密切相关。基于STM的应力校正方案适合于材料体积最小化设计,而违反集的增强应力测量则适合于平均柔量最小化设计。同时,所提出的优化方法可以轻松实现应力约束拓扑优化,计算成本低,收敛稳定。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Structures》 |2018年第3期|23-39|共17页
  • 作者单位

    Dalian Univ Technol, Int Res Ctr Computat Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Int Res Ctr Computat Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Int Res Ctr Computat Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Int Res Ctr Computat Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Topology optimization; Stress constraints; SIMP method; Nodal density variable; Stress aggregation function;

    机译:拓扑优化;应力约束;SIMP方法;节点密度变量;应力聚集函数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号