首页> 外文期刊>Computers & Security >Combating the evolving spammers in online social networks
【24h】

Combating the evolving spammers in online social networks

机译:对抗在线社交网络中不断发展的垃圾邮件发送者

获取原文
获取原文并翻译 | 示例

摘要

Online social networks, such as Facebook and Sina Weibo, have become the most popular platforms for information sharing and social activities. Spammers have utilized social networks as a new way to spread spam information using fake accounts. Many detection methods have been proposed to solve this problem, and have been proved to be successful to some extent. However, as the spammers' strategies for evading detection evolve, many existing methods lose their efficacy. A major limitation of previous approaches is that they are using the features from a static time point to detect spammers, without considering temporal factors. In this study, we approach the challenge of spammer detection by leveraging the temporal evolution patterns of users. We propose a dynamic metric to measure the change in users' activities and design new features to quantify users' evolution patterns. Then we develop a framework by combining unsupervised and supervised learning to distinguish between spammers and legitimate users. We test our method on a real world dataset with a large number of users. The evaluation results show that our approach can efficiently distinguish the difference between spammers and legitimate users regarding temporal evolution patterns. It also demonstrates the high level of similarity in the spammers' temporal evolution patterns. Compared with other detection methods, our method can achieve better performance. To the best of our knowledge, our study is the first to provide a generic and efficient framework to depict the evolutional pattern of users. It can handle the problem of spammers updating their strategies to evade detection and is a valuable reference for this research field.
机译:Facebook和新浪微博等在线社交网络已成为信息共享和社交活动的最受欢迎平台。垃圾邮件发送者已经利用社交网络作为使用伪造帐户传播垃圾邮件信息的新方法。已经提出了许多检测方法来解决该问题,并已被证明在一定程度上是成功的。但是,随着垃圾邮件发送者逃避检测策略的发展,许多现有方法都失去了功效。先前方法的主要局限性在于,它们使用静态时间点的功能来检测垃圾邮件发送者,而没有考虑时间因素。在这项研究中,我们通过利用用户的时间演变模式来应对垃圾邮件发送者检测的挑战。我们提出了一种动态指标来衡量用户活动的变化,并设计新功能来量化用户的演变模式。然后,我们通过结合无监督和有监督的学习来开发一个框架,以区分垃圾邮件发送者和合法用户。我们在具有大量用户的真实数据集上测试我们的方法。评估结果表明,我们的方法可以有效地区分垃圾邮件发送者和合法用户在时间演变模式方面的区别。它还表明垃圾邮件发送者的时间演变模式具有高度相似性。与其他检测方法相比,我们的方法可以获得更好的性能。据我们所知,我们的研究是第一个提供通用且有效的框架来描述用户演化模式的研究。它可以解决垃圾邮件发送者更新其策略以逃避检测的问题,对于该研究领域是有价值的参考。

著录项

  • 来源
    《Computers & Security》 |2018年第1期|60-73|共14页
  • 作者单位

    College of Computer Science and Technology, Jilin University, Changchun, China;

    College of Computer Science and Technology, Jilin University, Changchun, China;

    College of Computer Science and Technology, Jilin University, Changchun, China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China;

    College of Computer Science and Technology, Jilin University, Changchun, China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Online social networks; Spammer detection; Temporal evolution; Machine learning; Classification;

    机译:在线社交网络;垃圾邮件发送者检测;时间演变;机器学习;分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号