首页> 外文期刊>Computers & operations research >EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression
【24h】

EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression

机译:振选:交互式随机序数回归引导的进化多目标优化

获取原文
获取原文并翻译 | 示例

摘要

We propose a family of algorithms, called EMOSOR, combining Evolutionary Multiple Objective Optimization with Stochastic Ordinal Regression. The proposed methods ask the Decision Maker (DM) to holistically compare, at regular intervals, a pair of solutions, and use the Monte Carlo simulation to construct a set of preference model instances compatible with such indirect and incomplete information. The specific variants of EMOSOR are distinguished by the following three aspects. Firstly, they make use of two different preference models, i.e., either an additive value function or a Chebyshev function. Secondly, they aggregate the acceptability indices derived from the stochastic analysis in various ways, and use thus constructed indicators or relations to sort the solutions obtained in each generation. Thirdly, they incorporate different active learning strategies for selecting pairs of solutions to be critically judged by the DM. The extensive computational experiments performed on a set of benchmark optimization problems reveal that EMOSOR is able to bias an evolutionary search towards a part of the Pareto front being the most relevant to the DM, outperforming in this regard the state-of-the-art interactive evolutionary hybrids. Moreover, we demonstrate that the performance of EMOSOR improves in case the forms of a preference model used by the method and the DM's value system align. Furthermore, we discuss how vastly incorporation of different indicators based on the stochastic acceptability indices influences the quality of both the best constructed solution and an entire population. Finally, we demonstrate that our novel questioning strategies allow to reduce a number of interactions with the DM until a high-quality solution is constructed or, alternatively, to discover a better solution after the same number of interactions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们提出了一系列算法,称为发泡,与随机序数回归相结合的进化多目标优化。所提出的方法要求决策者(DM)以定期间隔,一对解决方案对全能进行比较,并使用Monte Carlo仿真构造与这种间接和不完整信息兼容的一组偏好模型实例。产生的产生的特定变体由以下三个方面不同。首先,它们利用了两个不同的偏好模型,即添加剂值函数或Chebyshev功能。其次,它们以各种方式聚合从随机分析中衍生的可接受性指标,并使用由此构造的指标或关系来分类每代中获得的溶液。第三,它们包含不同的主动学习策略,用于选择由DM批判性判断的解决方案。在一组基准优化问题上进行的广泛计算实验表明,发射品能够偏向一部分帕累托前面的进化搜索,这是与DM最相关的,在这方面表现出最先进的交互式进化杂交种。此外,我们证明了在方法和DM值系统对齐的偏好模型的形式方面提高了发射器的性能。此外,我们讨论了基于随机可接受指标的不同指标的大大纳入如何影响最佳构造的解决方案和整个人口的质量。最后,我们证明我们的新颖提问策略允许减少与DM的许多相互作用,直到构造高质量的解决方案,或者,在相同数量的相互作用之后发现更好的解决方案。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号