首页> 外文期刊>Computers & operations research >EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression
【24h】

EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression

机译:EMOSOR:以交互式随机序数回归为指导的演化多目标优化

获取原文
获取原文并翻译 | 示例

摘要

We propose a family of algorithms, called EMOSOR, combining Evolutionary Multiple Objective Optimization with Stochastic Ordinal Regression. The proposed methods ask the Decision Maker (DM) to holistically compare, at regular intervals, a pair of solutions, and use the Monte Carlo simulation to construct a set of preference model instances compatible with such indirect and incomplete information. The specific variants of EMOSOR are distinguished by the following three aspects. Firstly, they make use of two different preference models, i.e., either an additive value function or a Chebyshev function. Secondly, they aggregate the acceptability indices derived from the stochastic analysis in various ways, and use thus constructed indicators or relations to sort the solutions obtained in each generation. Thirdly, they incorporate different active learning strategies for selecting pairs of solutions to be critically judged by the DM. The extensive computational experiments performed on a set of benchmark optimization problems reveal that EMOSOR is able to bias an evolutionary search towards a part of the Pareto front being the most relevant to the DM, outperforming in this regard the state-of-the-art interactive evolutionary hybrids. Moreover, we demonstrate that the performance of EMOSOR improves in case the forms of a preference model used by the method and the DM's value system align. Furthermore, we discuss how vastly incorporation of different indicators based on the stochastic acceptability indices influences the quality of both the best constructed solution and an entire population. Finally, we demonstrate that our novel questioning strategies allow to reduce a number of interactions with the DM until a high-quality solution is constructed or, alternatively, to discover a better solution after the same number of interactions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们提出了一系列算法,称为EMOSOR,将进化多目标优化与随机序数回归相结合。所提出的方法要求决策者(DM)以固定的间隔对一对解决方案进行整体比较,并使用Monte Carlo模拟来构建与此类间接和不完全信息兼容的一组偏好模型实例。 EMOSOR的特定变体通过以下三个方面进行区分。首先,它们利用两种不同的偏好模型,即加性值函数或切比雪夫函数。其次,它们以各种方式汇总从随机分析得出的可接受性指标,并使用由此构建的指标或关系对每一代获得的解决方案进行排序。第三,他们采用了不同的主动学习策略,以选择由DM严格评估的解决方案对。针对一组基准优化问题进行的大量计算实验表明,EMOSOR能够将进化搜索偏向与DM最相关的帕累托前沿部分,在这方面的表现优于最新的交互式进化杂交种。此外,我们证明,如果该方法使用的偏好模型的形式与DM的价值体系对齐,则EMOSOR的性能将得到改善。此外,我们讨论了基于随机可接受性指标的各种指标的广泛整合如何影响最佳构造的解决方案和整个总体的质量。最后,我们证明了我们新颖的提问策略可以减少与DM的交互次数,直到构建出高质量的解决方案为止,或者在经过相同数量的交互后发现更好的解决方案。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号