首页> 外文期刊>Computers & operations research >Post-pruning in decision tree induction using multiple performance measures
【24h】

Post-pruning in decision tree induction using multiple performance measures

机译:使用多种性能指标进行决策树归纳的后修剪

获取原文
获取原文并翻译 | 示例

摘要

The decision tree (DT) induction process has two major phases: the growth phase and the pruning phase. The pruning phase aims to generalize the DT that was generated in the growth phase by generating a sub-tree that avoids over-fitting to the training data. Most post-pruning methods essentially address post-pruning as if it were a single objective problem (i.e. maximize validation accuracy), and address the issue of simplicity (in terms of the number of leaves) only in the case of a tie. However, it is well known that apart from accuracy there are other performance measures (e.g. stability, simplicity, interpretability) that are important for evaluating DT quality. In this paper, we propose that multi-objective evaluation be done during the post-pruning phase in order to select the best sub-tree, and propose a procedure for obtaining the optimal sub-tree based on user provided preference and value function information.
机译:决策树(DT)诱导过程有两个主要阶段:生长阶段和修剪阶段。修剪阶段旨在通过生成避免过度拟合训练数据的子树来概括在生长阶段生成的DT。大多数后修剪方法实际上都将后修剪视为单个目标问题(即,使验证准确性最大化),并且仅在平局的情况下解决简单性问题(就叶数而言)。但是,众所周知,除了准确性以外,还有其他性能指标(例如稳定性,简便性,可解释性)对于评估DT质量很重要。在本文中,我们建议在修剪后阶段进行多目标评估,以选择最佳子树,并提出一种基于用户提供的偏好和价值函数信息获取最佳子树的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号