首页> 外文期刊>Expert systems with applications >Post-pruning in regression tree induction: An integrated approach
【24h】

Post-pruning in regression tree induction: An integrated approach

机译:回归树归纳中的后修剪:一种集成方法

获取原文
获取原文并翻译 | 示例

摘要

The regression tree (RT) induction process has two major phases: the growth phase and the pruning phase. The pruning phase aims to generalize the RT that was generated in the growth phase by generating a subtree that avoids over-fitting to the training data. Most post-pruning methods essentially address post-pruning as if it were a single objective problem (i.e., maximize validation accuracy), and address the issue of simplicity (in terms of the number of leaves) only in the case of a tie. However, it is well known that apart from accuracy there are other performance measures (e.g., stability, simplicity) that are important for evaluating DT quality. In this paper we present an integrated approach to post-pruning phase that simultaneously accommodates multiple performance measures that are important for evaluating RT quality, and obtains the optimal subtree based on user provided preference and value function information.
机译:回归树(RT)的诱导过程具有两个主要阶段:生长阶段和修剪阶段。修剪阶段旨在通过生成避免过度拟合训练数据的子树来概括在生长阶段生成的RT。大多数后修剪方法实际上都将后修剪视为单个目标问题(即最大程度地提高验证准确性),并且仅在平局的情况下解决简单性问题(就叶数而言)。但是,众所周知,除了准确性之外,还有其他性能指标(例如,稳定性,简便性)对于评估DT质量很重要。在本文中,我们提出了一种用于修剪后阶段的集成方法,该方法可以同时容纳对评估RT质量至关重要的多种性能指标,并根据用户提供的偏好和价值函数信息获得最佳子树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号