首页> 外文期刊>Computers & operations research >Application of reinforcement learning to the game of Othello
【24h】

Application of reinforcement learning to the game of Othello

机译:强化学习在奥赛罗游戏中的应用

获取原文
获取原文并翻译 | 示例

摘要

Operations research and management science are often confronted with sequential decision making problems with large state spaces. Standard methods that are used for solving such complex problems are associated with some difficulties. As we discuss in this article, these methods are plagued by the so-called curse of dimensionality and the curse of modelling. In this article, we discuss reinforcement learning, a machine learning technique for solving sequential decision making problems with large state spaces. We describe how reinforcement learning can be combined with a function approximation method to avoid both the curse of dimensionality and the curse of modelling. To illustrate the usefulness of this approach, we apply it to a problem with a huge state space—learning to play the game of Othello. We describe experiments in which reinforcement learning agents learn to play the game of Othello without the use of any knowledge provided by human experts. It turns out that the reinforcement learning agents learn to play the game of Othello better than players that use basic strategies.
机译:运筹学和管理科学通常面临着状态空间较大的顺序决策问题。用于解决此类复杂问题的标准方法存在一些困难。正如我们在本文中讨论的那样,这些方法都受到所谓的“维度诅咒”和“建模诅咒”的困扰。在本文中,我们讨论了强化学习,这是一种用于解决具有较大状态空间的顺序决策问题的机器学习技术。我们描述了强化学习如何与函数逼近方法结合使用,从而避免了维数的诅咒和建模的诅咒。为了说明这种方法的有效性,我们将其应用于状态空间很大的问题—学习玩奥赛罗游戏。我们描述的实验中,强化学习代理无需使用人类专家提供的任何知识即可学习玩奥赛罗游戏。事实证明,强化学习代理比使用基本策略的玩家更好地学习玩奥赛罗游戏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号