首页> 外文期刊>Computers & operations research >Optimal Search-relocation Trade-off In Markovian-target Searching
【24h】

Optimal Search-relocation Trade-off In Markovian-target Searching

机译:马尔可夫目标搜索中的最优搜索-重定位折衷

获取原文
获取原文并翻译 | 示例

摘要

In this study, a standard moving-target search model was extended with a muitiple-search-speed option, whereby a trade-off is enabled between the increased detection chances owing to the searcher's better location and the increased uncertainty of the target's location resulting from the diminished search performance incurred in the relocation. This enhances the detection probability of the output search path and, thereby, the model's practicality. However, the scalability of the solution method is essential to its implementation, as the basic model is already NP-hard. We developed an efficient heuristic by combining the idea of approximate nondetection probability minimization and a hybridized shortest-path heuristic that exploits the fast-mixing property of the Markov chain. According to the results of an intensive experiment, the heuristic achieves a near-optimal trade-off within a very reasonable computation time.
机译:在这项研究中,标准的移动目标搜索模型扩展了多重搜索速度选项,从而可以在由于搜索者位置更好而导致的检测机会增加与由目标导致的目标位置不确定性增加之间进行权衡迁移导致搜索性能下降。这提高了输出搜索路径的检测概率,从而提高了模型的实用性。但是,解决方案方法的可伸缩性对其实现至关重要,因为基本模型已经具有NP-hard功能。通过结合近似未检测概率最小化的思想和利用马尔可夫链的快速混合特性的混合最短路径启发式算法,我们开发了一种有效的启发式算法。根据密集实验的结果,启发式算法在非常合理的计算时间内实现了接近最佳的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号