首页> 外文期刊>Computers & operations research >A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem
【24h】

A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem

机译:减少基于局部搜索的车辆路径问题方法的计算复杂度的策略

获取原文
获取原文并翻译 | 示例

摘要

This article focuses on the mechanism of evaluating solution neighborhoods, an algorithmic aspect which plays a crucial role on the efficiency of local-search based approaches. In specific, it presents a strategy for reducing the computational complexity required for applying local search to tackle various combinatorial optimization problems. The value of this contribution is two-fold. It helps practitioners design efficient local search implementations, and it facilitates the application of robust commercial local search-based algorithms to practical instances of very large size. The central rationale underlying the proposed complexity reduction strategy is straightforward: when a local search operator is applied to a given solution, only a limited part of this solution is modified. Thus, to exhaustively examine the neighborhood of the new solution, only the tentative moves that refer to the modified solution part have to be evaluated. To reduce the complexity of neighborhood evaluation, the static move descriptor (SMD) data structures are introduced, which encode local search moves in a systematic and solution independent manner. The proposed strategy is applied to the vehicle routing problem (VRP) which is of high importance both from the practical and theoretical viewpoints. The use of the SMD concept, for encoding three commonly applied quadratic local search operators, results into a VRP local search method which exhibits an almost linearithmic complexity in respect to the instance size. Furthermore, exploiting the SMD representation of tentative moves, a metaheuristic strategy is proposed, which is aimed at diversifying the conducted search via a simple penalization policy. The proposed metaheuristic was tested on various large and very large scale VRP benchmark instances. It produced fine results, and managed to improve several best known solutions. The method was also executed on real-world instances of 3000 customers, the data of which reflects the actual geographic distribution of customers within four major cities.
机译:本文重点介绍评估解决方案邻域的机制,这是一种算法方面,对基于本地搜索的方法的效率起着至关重要的作用。具体而言,它提出了一种策略,用于减少应用局部搜索来解决各种组合优化问题所需的计算复杂性。这一贡献的价值是双重的。它可以帮助从业人员设计有效的本地搜索实现,并且有助于将强大的基于商业本地搜索的算法应用到非常大的实际实例中。所提议的复杂性降低策略所依据的中心原理很简单:当将本地搜索运算符应用于给定解决方案时,仅会修改该解决方案的有限部分。因此,要详尽地检查新解决方案的邻域,只需评估引用修改后的解决方案部分的试验性动作即可。为了降低邻域评估的复杂性,引入了静态移动描述符(SMD)数据结构,该结构以系统的,与解决方案无关的方式对本地搜索运动进行编码。所提出的策略被应用于车辆路径问题(VRP),这在实践和理论上都具有很高的重要性。使用SMD概念对三个常用的二次本地搜索运算符进行编码后,将结果转化为VRP本地搜索方法,该方法相对于实例大小表现出几乎线性的复杂性。此外,利用试探性动作的SMD表示,提出了一种元启发式策略,旨在通过简单的惩罚策略使进行的搜索多样化。建议的元启发式方法已在各种大型和超大型VRP基准实例上进行了测试。它产生了良好的结果,并设法改进了几种最著名的解决方案。该方法还在3000个客户的真实实例上执行,其数据反映了四个主要城市中客户的实际地理分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号