首页> 外文期刊>Systems Journal, IEEE >A Local Search-Based Multiobjective Optimization Algorithm for Multiobjective Vehicle Routing Problem With Time Windows
【24h】

A Local Search-Based Multiobjective Optimization Algorithm for Multiobjective Vehicle Routing Problem With Time Windows

机译:带有时间窗的多目标车辆路径问题的基于局部搜索的多目标优化算法

获取原文
获取原文并翻译 | 示例

摘要

Vehicle routing problem with time windows (VRPTW) is an important logistics problem, which appears to be multiobjective in real world. Recently, a general multiobjective VRPTW (MOVRPTW) with five objectives has been defined, and a set of MOVRPTW problem instances based on data from real world have been proposed. These instances indicate more truly multiobjective nature and represent more realistic and challenging MOVRPTW cases. In this paper, a local search-based multiobjective optimization algorithm is proposed for the real-world MOVRPTW instances. Considering the problem structure of MOVRPTW, we design different local search methods for different objectives. These simple but effective local search methods cooperate to optimize different objectives simultaneously. More problem-specific knowledge can be extracted by using objectivewise local search components, and thus, high-quality solutions are expected to be generated. The proposed algorithm is tested on 45 realistic and challenging MOVRPTW benchmark instances from real world. Experimental results show that the proposed algorithm can obtain better solutions than the previous evolutionary algorithm-based multiobjective algorithm on new MOVRPTW cases. Additional results on 56 Solomon instances show the stability of the proposed algorithm across data sets.
机译:带时间窗的车辆路径问题(VRPTW)是重要的物流问题,在现实世界中似乎是多目标的。近来,已经定义了具有五个目标的通用多目标VRPTW(MOVRPTW),并且已经提出了基于来自现实世界的数据的一组MOVRPTW问题实例。这些实例表明了更真实的多目标性质,代表了更现实和更具挑战性的MOVRPTW案例。本文针对现实世界中的MOVRPTW实例,提出了一种基于局部搜索的多目标优化算法。考虑到MOVRPTW的问题结构,针对不同的目标设计了不同的局部搜索方法。这些简单但有效的本地搜索方法可以同时优化不同的目标。通过使用客观的本地搜索组件可以提取更多特定于问题的知识,因此,有望生成高质量的解决方案。该算法在来自现实世界的45个现实且具有挑战性的MOVRPTW基准实例上进行了测试。实验结果表明,在新的MOVRPTW情况下,该算法比基于进化算法的多目标算法能获得更好的解。在56个Solomon实例上的其他结果显示了所提出算法在数据集中的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号