首页> 外文期刊>Computers & operations research >Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem
【24h】

Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem

机译:可变和自适应邻域搜索算法解决铁路快速公交时间表问题

获取原文
获取原文并翻译 | 示例

摘要

Supplying affordable and efficient transportation services to the users is one of the main tasks of the public transport systems. In this study, the objective is the minimization of the total and maximum waiting time of the passengers through optimization of the train timetables for urban rail transit systems. For this purpose, mixed-integer linear and non-linear programming models are developed which could solve the small to medium-sized test instances optimally. In order to tackle large instances, adaptive and variable neighbourhood search algorithms are designed based on different novel solution encoding schemes and decoding approaches. The effectiveness of the proposed models and solution methods are illustrated through the application to the Tehran intercity underground rail lines in IRAN. The outcomes demonstrate that the variable neighbourhood search algorithm outperforms the adaptive step-size neighbourhood search method in the different scenarios of the real case. Furthermore, the generated headway for the period of study result in a significant reduction in total waiting time of the passengers compared with the current baseline timetables. (C) 2015 Elsevier Ltd. All rights reserved.
机译:向用户提供负担得起的高效运输服务是公共交通系统的主要任务之一。在这项研究中,目标是通过优化城市轨道交通系统的火车时刻表,最大程度地减少乘客的总等候时间。为此,开发了混合整数线性和非线性编程模型,该模型可以最佳地解决中小型测试实例。为了解决大型实例,基于不同的新颖解决方案编码方案和解码方法,设计了自适应和可变邻域搜索算法。通过将其应用于伊朗的德黑兰城际地下铁路线,说明了所提出的模型和求解方法的有效性。结果表明,在实际情况的不同情况下,可变邻域搜索算法优于自适应步长邻域搜索方法。此外,与当前的基准时间表相比,在学习期间产生的进展大大减少了乘客的总等候时间。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号