首页> 外文期刊>Computers & mathematics with applications >A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions
【24h】

A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions

机译:带边界条件的双曲守恒律的带Lagrange乘数的不连续Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a discontinuous Galerkin method with Lagrange multiplier (DGLM) to approximate the solution to the hyperbolic conservation laws with boundary conditions. Lagrange multipliers are introduced on the edge/face of the element via weak divergence (Wang and Ye, 2014). The final global system has reduced numbers of unknowns of the standard DG methods. Numerical fluxes from finite volume/difference method are not considered. For the time discretization, backward Euler difference method is used. Stability of the approximate solution is proved in energy norm. Discontinuity of the solution is allowed in the error analysis. Local error estimates of O (h(r+1/2) + Delta t) with P-r (E) elements (r >= d+1/2) are derived, where h and Delta t are the maximum diameter of the elements and time steps, respectively, and d is the dimension of the spatial domain. The high order approximation is obtained under an appropriate condition on the stabilizing parameter. It is shown that the method preserves the property of the local mass conservation. An explanation on algorithmic aspects is given. (C) 2015 Elsevier Ltd. All rights reserved.
机译:我们引入了带拉格朗日乘数(DGLM)的不连续Galerkin方法,以近似求解带边界条件的双曲守恒律。拉格朗日乘数通过弱散度引入元素的边缘/面上(Wang and Ye,2014)。最终的全局系统减少了标准DG方法的未知数。不考虑有限体积/差分法产生的数值通量。对于时间离散化,使用后向欧拉差分法。能量范数证明了近似解的稳定性。在误差分析中允许解决方案的不连续性。得出带有Pr(E)元素(r> = d + 1/2)的O(h(r + 1/2)+ Delta t)的局部误差估计,其中h和Delta t是元素的最大直径,而时间步长,d是空间域的维数。在稳定条件下的适当条件下获得高阶近似。结果表明,该方法保留了局部群众守恒的性质。给出了算法方面的解释。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号