首页> 外文期刊>Computers & mathematics with applications >A space-time fully decoupled wavelet Galerkin method for solving two-dimensional Burgers' equations
【24h】

A space-time fully decoupled wavelet Galerkin method for solving two-dimensional Burgers' equations

机译:时空完全解耦小波Galerkin方法求解二维Burgers方程

获取原文
获取原文并翻译 | 示例

摘要

A space-time fully decoupled formulation for solving two-dimensional Burgers' equations is proposed based on the Coiflet-type wavelet sampling approximation for a function defined on a bounded interval. By applying a wavelet Galerkin approach for spatial discretization, nonlinear partial differential equations are first transformed into a system of ordinary differential equations, in which all matrices are completely independent of time and never need to be updated in the time integration. Finally, the mixed explicit-implicit scheme is employed to solve the resulting semi-discretization system. By numerically studying three widely considered test problems, results demonstrate that the proposed method has a much better accuracy and a faster convergence rate than many existing numerical methods. Most importantly, the study also indicates that the present wavelet method is capable of solving the two-dimensional Burgers' equation at high Reynolds numbers. (C) 2016 Elsevier Ltd. All rights reserved.
机译:基于Coiflet型小波采样近似,针对在有界区间上定义的函数,提出了用于求解二维Burgers方程的时空完全解耦公式。通过应用小波Galerkin方法进行空间离散化,首先将非线性偏微分方程转换为常微分方程组,在该系统中,所有矩阵都完全与时间无关,并且不需要在时间积分中进行更新。最后,采用混合显式-隐式方案来解决所得的半离散化系统。通过对三个广泛考虑的测试问题进行数值研究,结果表明,与许多现有数值方法相比,该方法具有更高的精度和更快的收敛速度。最重要的是,研究还表明,当前的小波方法能够在高雷诺数下求解二维Burgers方程。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号