首页> 外文期刊>Computers & mathematics with applications >Analysis of multiscale mortar mixed approximation of nonlinear elliptic equations
【24h】

Analysis of multiscale mortar mixed approximation of nonlinear elliptic equations

机译:非线性椭圆方程的多尺度砂浆混合逼近分析

获取原文
获取原文并翻译 | 示例

摘要

A multiscale mortar mixed finite element method is established to approximate non-linear second order elliptic equations. The method is based on non-overlapping domain decomposition and mortar finite element methods. The existence and uniqueness of the approximation are demonstrated, and a priori L-2-error estimates for the velocity and pressure are derived. An error bound for mortar pressure is proved. Convergence estimates of the mortar pressure are based on a linear interface formulation having the discrete-pressure dependent coefficient. Optimal order convergence is achieved on the fine scale by a proper choice of mortar space and polynomial degree of approximation. The quadratic convergence of the Newton-Raphson method is proved for the nonlinear algebraic system arising from the mortar mixed formulation of the problem. Numerical experiments are performed to support theoretic results. (C) 2017 Elsevier Ltd. All rights reserved.
机译:建立了多尺度砂浆混合有限元方法来近似非线性二阶椭圆方程。该方法基于非重叠域分解和灰浆有限元方法。证明了该逼近的存在性和唯一性,并得出了关于速度和压力的先验L-2-误差估计。证明了砂浆压力的误差范围。灰浆压力的收敛估计是基于具有离散压力相关系数的线性界面公式。通过适当选择砂浆空间和多项式逼近度,可以在精细规模上实现最佳阶收敛。牛顿-拉夫森法的二次收敛被证明是由该问题的砂浆混合配方引起的非线性代数系统。进行数值实验以支持理论结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号