首页> 外文期刊>Computers & mathematics with applications >Numerical results for adaptive (negative norm) constrained first order system least squares formulations
【24h】

Numerical results for adaptive (negative norm) constrained first order system least squares formulations

机译:自适应(负值)的数值结果约束第一订单系统最小二乘配方

获取原文
获取原文并翻译 | 示例

摘要

We perform a followup computational study of the recently proposed space-time first order system least squares ( FOSLS) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space-time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space-time AMR approach in both two space plus time and three space plus time dimensions. (C) 2020 The Authors. Published by Elsevier Ltd.
机译:我们对最近建议的时效时间第一订单系统最小二乘(FOSLS)方法执行后续计算研究,该方法受到如CFOSL的约束,我们现在将其与我们开发的新功能相结合,即并行自适应网格细化(AMR )在4D中。 需要AMR来缓解组合空间时域中的高内存需求,并且还允许将常(4D)网格更好地在时空中遵循物理学。 通过广泛的计算实验,并行进行,我们展示了两个空间加时间和三个空间加上时间尺寸的组合时空AMR方法的可行性。 (c)2020作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号