首页> 外文期刊>Computers & mathematics with applications >Newton iterative method based on finite element discretization for the stationary Darcy-Brinkman equations
【24h】

Newton iterative method based on finite element discretization for the stationary Darcy-Brinkman equations

机译:基于有限元离散化的牛顿迭代方法,用于静止达西 - Brinkman方程

获取原文
获取原文并翻译 | 示例

摘要

The stationary Darcy-Brinkman equations in the double-diffusive convection, which model the heat and mass transfer phenomena, are considered in this paper. Based on a suitable contractive operator, the existence and uniqueness of the problem are firstly proved by using the fixed point theorem. The regularities of the weak solution are also derived. Then, the Newton iterative method is studied for solving the nonlinear discrete system generated from the finite element approximation, including the stability and the optimal error estimates regarding the spatial mesh size and the iterative factor. The analysis indicates that the viscosity coefficient has more impact on the numerical algorithm than the thermal conductivity and the mass diffusivity coefficients. Finally, many numerical examples are shown to confirm the correctness of the theoretical prediction. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本文考虑了模拟热量和传质对流的双扩散对流中的静态达西 - Brinkman方程。基于合适的收缩算子,首先通过使用定点定理证明了问题的存在和唯一性。还导出了弱解决方案的规律。然后,研究了牛顿迭代方法,用于求解从有限元近似生成的非线性离散系统,包括关于空间网格尺寸和迭代因子的稳定性和最佳误差估计。分析表明粘度系数对数值算法的影响比导热系数和质量扩散系数更多。最后,示出了许多数值例子来确认理论预测的正确性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号