首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Convergence Of Three Iterative Methods Based On The Finite Element Discretization For The Stationary Navier-stokes Equations
【24h】

Convergence Of Three Iterative Methods Based On The Finite Element Discretization For The Stationary Navier-stokes Equations

机译:静态Navier-stokes方程的有限元离散化的三种迭代方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

This paper considers three iterative methods for solving the stationary Navier-Stokes equations. Iterative method 1 consists in solving the stationary Stokes equations, iterative method Ⅱ consists in solving the stationary linearized Navier-Stokes equations and iterative method Ⅲ consists in solving the stationary Oseen equations under the finite element discretization, respectively, at each iterative step. Also, we discuss the stability and convergence of three iterative methods. The iterative methods I and Ⅱ are stability and convergence under the strong uniqueness conditions, where the iterative method Ⅱ is the second order convergence. Furthermore, the iterative method Ⅲ is uncondition stability and convergence under the uniqueness condition. Finally, some numerical tests show that the efficiency of the theoretical analysis.
机译:本文考虑了三种求解固定Navier-Stokes方程的迭代方法。迭代方法1包含求解固定的Stokes方程,迭代方法Ⅱ包含求解固定的线性化Navier-Stokes方程,迭代方法Ⅲ包含在有限元离散化下的每个迭代步骤分别求解静态Oseen方程。此外,我们讨论了三种迭代方法的稳定性和收敛性。迭代方法Ⅰ和Ⅱ是在强唯一性条件下的稳定性和收敛性,迭代方法Ⅱ是二阶收敛性。此外,迭代法Ⅲ是唯一性条件下的无条件稳定性和收敛性。最后,一些数值试验表明了理论分析的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号