首页> 外文期刊>Computers & mathematics with applications >Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations
【24h】

Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations

机译:求解拟曲面偏微分方程的Jacobi光谱 - Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

Herein, we propose a numerical scheme to solve spectrally hyperbolic partial differential equations (HPDEs) using Galerkin method and approximate the solutions using double shifted Jacobi Polynomials. The main characteristic behind this approach is that it reduces such problems to those of solving systems of algebraic equations which greatly simplifies the problem. The validity and efficiency of the proposed method are investigated and verified through several examples. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在此,我们提出了一种使用Galerkin方法解决光谱双曲局部微分方程(HPDE)的数值方案,并使用双移位的雅宝多项式近似溶液。这种方法背后的主要特点是,它对求解的代数方程系统的问题减少了大大简化了问题的问题。通过几个例子调查并验证了所提出的方法的有效性和效率。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号