首页> 外文期刊>Computers & mathematics with applications >Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations
【24h】

Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations

机译:求解双曲型偏微分方程的移位Jacobi谱-Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

Herein, we propose a numerical scheme to solve spectrally hyperbolic partial differential equations (HPDEs) using Galerkin method and approximate the solutions using double shifted Jacobi Polynomials. The main characteristic behind this approach is that it reduces such problems to those of solving systems of algebraic equations which greatly simplifies the problem. The validity and efficiency of the proposed method are investigated and verified through several examples. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在此,我们提出了一种数值方案,用于使用Galerkin方法求解频谱双曲型偏微分方程(HPDE),并使用双移位Jacobi多项式近似求解。该方法背后的主要特征是将此类问题减少到求解代数方程组的问题,从而大大简化了问题。通过几个实例对所提方法的有效性和有效性进行了研究和验证。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号