首页> 外文期刊>Computers & mathematics with applications >Robustness and dispersion analysis of the Partition of Unity Finite Element Method applied to the Helmholtz equation
【24h】

Robustness and dispersion analysis of the Partition of Unity Finite Element Method applied to the Helmholtz equation

机译:Helmholtz方程的统一有限元划分方法的鲁棒性和色散分析

获取原文
获取原文并翻译 | 示例

摘要

The Partition of Unity Finite Element Method (PUFEM) has been widely used for the numerical simulation of the Helmholtz equation in different physical settings. In fact, it is a numerical pollution-free alternative method to the classical piecewise polynomial-based finite element methods. Taking into account a plane wave enrichment of the piecewise linear finite element method, the main goal of this work is focused on the derivation of the numerical dispersion relation and the robustness analysis of the PUFEM discretization when a spurious perturbation is presented in the wave number value used in the enrichment definition. From the one-dimensional Helmholtz equation, the discrete wave number is estimated based on a Bloch's wave analysis and a priori error estimates are computed explicitly in terms of the mesh size, the wave number, and the perturbation value. (C) 2019 Elsevier Ltd. All rights reserved.
机译:划分有限元方法(PUFEM)已被广泛用于在不同物理环境下对亥姆霍兹方程进行数值模拟。实际上,它是经典的基于分段多项式的有限元方法的一种数值无污染的替代方法。考虑到分段线性有限元法的平面波富集,这项工作的主要目标集中在数值色散关系的推导以及在波数值中出现杂散扰动时PUFEM离散化的鲁棒性分析。在浓缩定义中使用。根据一维Helmholtz方程,基于Bloch的波分析估计离散波数,并根据网格大小,波数和摄动值明确计算先验误差估计。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号