首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem
【24h】

Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem

机译:统一有限元方法的平面波富集分区的精确积分方案,用于解决亥姆霍兹问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an exact integration scheme to compute highly oscillatory integrals that appear in the solution of the two-dimensional Helmholtz problem using the planewave-enriched partition of unity finite element method. In the proposed scheme, such oscillatory integrals are computed by a recursive application of the divergence theorem, eventually expressing the integrals in terms of evaluations of the corresponding integrands at the nodes of the finite element mesh. The number of such function evaluations is independent of the wave number k, which permits the scheme to be used for arbitrary high values of k. We consider finite element meshes with unstructured triangular and structured rectangular elements, and present numerical results for three canonical benchmark Helmholtz problems to demonstrate the accuracy and efficacy of the method. (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种精确的积分方案,可以使用单位有限元方法中富集的平面波来计算二维亥姆霍兹问题解中出现的高振荡积分。在提出的方案中,这种振荡积分是通过散度定理的递归应用来计算的,最终根据在有限元网格的节点处对相应积分的求值来表达积分。这种函数评估的次数与波数k无关,这允许该方案用于k的任意高值。我们考虑了具有非结构化三角形和结构化矩形元素的有限元网格,并给出了三​​个规范基准亥姆霍兹问题的数值结果,以证明该方法的准确性和有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号