首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations
【24h】

Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations

机译:不可压缩的Navier-Stokes方程的混合有限元方法中的耐压和离散亥姆霍兹投影仪

获取原文
获取原文并翻译 | 示例

摘要

Recently, it was understood how to repair a certain L-2-orthogonality of discretely divergence-free vector fields and gradient fields such that the velocity error of inf-sup stable discretizations for the incompressible Stokes equations becomes pressure-independent. These new 'pressure-robust' Stokes discretizations deliver a small velocity error, whenever the continuous velocity field can be well approximated on a given grid. On the contrary, classical inf-sup stable Stokes discretizations can guarantee a small velocity error only when both the velocity and the pressure field can be approximated well, simultaneously.
机译:最近,人们了解了如何修复离散无散度矢量场和梯度场的某些L-2-正交性,以使不可压缩Stokes方程的inf-up稳定离散化的速度误差变得与压力无关。只要可以在给定网格上很好地近似连续速度场,这些新的“耐压”斯托克斯离散化都会产生较小的速度误差。相反,只有当可以同时很好地近似速度场和压力场时,经典的insup稳定Stokes离散化才能保证较小的速度误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号