首页> 外文期刊>Computers & mathematics with applications >Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay
【24h】

Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay

机译:具有一般发病率功能,细胞间传播和时间延迟的扩散病毒模型的动力学

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we revisit a diffusive virus dynamics model with general incidence function and time delay. One novelty of our model is that we introduce cell-to-cell transmission via formation of virological synapses to reflect the fact that it may play a more important role in virus spreading in addition to virus-to-cell infection. We justify the well-posedness of the model and identify the basic reproduction number H-0 for the model to be a sharp threshold value. The global stability of equilibria is determined by constructing suitable Lyapunov functionals in the sense that: the infection-free equilibrium is globally asymptotically stable H-0 = 1, and when H-0 1, the global asymptotic stability of infection equilibrium implies that the infection will persist. A significant impact of the cell-to-cell transmission is that they increase the basic reproduction number. If one neglects either the cell-to-cell transmission or virus-to-cell infection, the basic reproduction number of the model that is under-evaluated. Last, we perform numerical simulation to support our theoretic results. We set the domain of the viruses to be a two-dimensional square domain with the homogeneous Neumann boundary conditions to reflect the spatial spreading. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,我们将重新研究具有一般发病率函数和时间延迟的扩散病毒动力学模型。我们的模型的新颖之处在于,我们通过病毒突触的形成来引入细胞间的传播,以反映这一事实,即除病毒对细胞的感染外,它还可能在病毒传播中发挥更重要的作用。我们证明模型的适定性是正确的,并将模型的基本再现数H-0确定为一个尖锐的阈值。平衡的全局稳定性是通过以下方式构造合适的Lyapunov函数来确定的:无感染平衡是全局渐近稳定的H-0 <= 1,并且当H-0> 1时,感染平衡的全局渐近稳定性意味着感染将持续。单元到单元传输的显着影响是它们增加了基本再现次数。如果忽略细胞间传播或病毒间感染,则模型的基本复制数被低估了。最后,我们进行数值模拟以支持我们的理论结果。我们将病毒的域设置为二维正方形域,具有均匀的Neumann边界条件,以反映空间扩散。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号