首页> 外文期刊>Computers & mathematics with applications >A Family of Methods for Solving Nonlinear Equations Using Quadratic Interpolation
【24h】

A Family of Methods for Solving Nonlinear Equations Using Quadratic Interpolation

机译:二次插值法求解非线性方程组的方法

获取原文
获取原文并翻译 | 示例

摘要

A two-parameter derivative-free family of methods for finding the simple and real roots of nonlinear equations is presented. The approximation process is carried out by using interpolation on three successive points (x{sub}k, y{sub}k) to determine the coefficients c, d, e in the general quadratic equation ax{sup}2 + by{sup}2 + cx + dy + e = 0 in the terms of the coefficients a, b. Different choices of a, 6 correspond to different quadratic forms, Muller and inverse parabolic interpolation methods are seen as special cases of the family. Geometrical relationships with other methods are established. It is shown that the order of convergence is 1.84. Some numerical examples are given.
机译:提出了两参数无导数族,用于找到非线性方程的简单和实根。通过对三个连续点(x {sub} k,y {sub} k)进行插值来执行逼近过程,以确定一般二次方程ax {sup} 2 + by {sup}的系数c,d,e 2 + cx + dy + e = 0,根据系数a,b。 a,6的不同选择对应于不同的二次形式,Muller和逆抛物线插值方法被视为该族的特殊情况。建立与其他方法的几何关系。结果表明,收敛阶数为1.84。给出了一些数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号