首页> 外文期刊>Computers & mathematics with applications >Inverse Power and Durand-Kerner Iterations for Univariate Polynomial Root-Finding
【24h】

Inverse Power and Durand-Kerner Iterations for Univariate Polynomial Root-Finding

机译:单变量多项式求根的逆幂和Durand-Kerner迭代

获取原文
获取原文并翻译 | 示例

摘要

Univariate polynomial root-finding is the oldest classical problem of mathematics and computational mathematics, and is slill an important research topic, due to its impact on computational algebra and geometry. The Weierstrass (Durand-Kerner) approach and its variations as well as matrix methods based on the QR algorithm are among the most popular practical choices for simultaneous approximation of all roots of a polynomial. We propose an alternative application of the inverse power iteration to generalized companion matrices for polynomial root-finding, demonstrate its effectiveness, and relate its study to unifying the derivation of the Weierstrass (Durand-Kerner) algorithm (having quadratic convergence) and its extensions having convergence rates 4,6,8,… Our experiments show substantial improvement versus the latter algorithm, even though the inverse power iteration is most effective for the more limited tasks of approximating a single root or a few selected roots.
机译:单变量多项式求根是数学和计算数学中最古老的古典问题,由于它对计算代数和几何的影响,它一直是重要的研究课题。 Weierstrass(Durand-Kerner)方法及其变体以及基于QR算法的矩阵方法是同时逼近多项式所有根的最受欢迎的实用选择之一。我们提出将逆幂迭代应用于多项式根查找的广义伴随矩阵的另一种应用,证明其有效性,并将其研究与统一Weierstrass(Durand-Kerner)算法的推导(具有二次收敛性)及其具有收敛速度4,6,8,…我们的实验表明,相对于后一种算法,尽管逆功率迭代对于逼近单个根或几个选定根的更为有限的任务最为有效,但我们的实验仍显示出显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号