首页> 外文期刊>urnal of Symbolic Computation >Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding
【24h】

Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding

机译:单变量多项式:用于数值分解和求根的几乎最佳算法

获取原文
获取原文并翻译 | 示例

摘要

To approximate all roots(zeros)of a univariate polynomials, we develop two effective algorithms and combine them in a single recursive process. One algorithm computes a basic well isolated zero-free annulus on the complex plane, whereas another algorithm numerically splits the input polynomial of the nth degree into two factors balanced in the degrees and with the zero sets separated by the basic annulus. Recursive combination of the two algorithms leads to computation of complete numerical factorization of a polynomial into the product of linear factors and further to the approximation of the roots.
机译:为了逼近一元多项式的所有根(零),我们开发了两种有效的算法,并将它们组合在一个递归过程中。一种算法在复数平面上计算基本隔离良好的零自由环形空间,而另一种算法将第n个度的输入多项式在数值上划分为两个度数平衡的零因子,并且零个集合由基本环形空间分开。两种算法的递归组合导致将多项式的完整数值因式分解计算为线性因子的乘积,并进一步求出根的近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号