首页> 外文期刊>Computers & mathematics with applications >An efficient method for option pricing with discrete dividend payment
【24h】

An efficient method for option pricing with discrete dividend payment

机译:离散股息支付的有效期权定价方法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the construction of a numerical solution of the Black-Scholes equation modeling option pricing with a discrete dividend payment. This model is a partial differential equation with two variables: the underlying asset and the time to maturity, and involves the shifted Dirac delta function centered at the dividend payment date. This generalized function is suitable for approximation by means of sequences of ordinary functions. By applying a semidiscretization technique on the asset, a numerical solution is obtained and the independence of the considered sequence in a wide class of delta defining sequences is proved. From the study of the influence of the spatial step h, it follows that the difference between the numerical solution for h and h/2 is O(h~2) as h → 0. The proposed method is useful for different discrete dividend types like a dividend of present value D_0, a constant yield dividend or an arbitrary underlying asset-dependent yield dividend payment. Several illustrative examples are included.
机译:本文涉及具有离散股息支付的Black-Scholes方程建模期权定价的数值解的构造。该模型是一个偏微分方程,具有两个变量:标的资产和到期时间,并且涉及以股息支付日为中心的位移狄拉克三角洲函数。该通用函数适合于通过普通函数的序列进行近似。通过对资产应用半离散化技术,获得了数值解,并证明了所考虑的序列在广泛的增量定义序列类别中的独立性。从对空间步长h的影响的研究中可以看出,当h→0时,h和h / 2的数值解之间的差为O(h〜2)。现值D_0的股利,固定收益率股利或任意与资产相关的潜在收益率股利支付。包括几个说明性示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号