首页> 外文期刊>Computers & mathematics with applications >An expansion-iterative method for numerically solving Volterra integral equation of the first kind
【24h】

An expansion-iterative method for numerically solving Volterra integral equation of the first kind

机译:第一类Volterra积分方程数值解的扩展迭代法

获取原文
获取原文并翻译 | 示例

摘要

Most integral equations of the first kind are ill-posed, and obtaining their numerical solution often leads to solving a linear system of algebraic equations of a large condition number. So, solving this system is difficult or impossible. For numerically solving Volterra integral equation of the first kind an efficient expansion-iterative method based on the block-pulse functions is proposed. Using this method, solving the first kind integral equation reduces to solving a recurrence relation. The approximate solution is most easily produced iteratively via the recurrence relation. Therefore, computing the numerical solution does not need to solve any linear system of algebraic equations. To show the convergence and stability of the method, some computable error bounds are obtained. Numerical examples are provided to illustrate that the method is practical and has good accuracy.
机译:第一类大多数积分方程是不适定的,获得它们的数值解通常会导致求解一个具有大条件数的代数方程的线性系统。因此,解决该系统困难或不可能。为了对第一类Volterra积分方程进行数值求解,提出了一种基于块脉冲函数的有效扩展迭代方法。使用该方法,求解第一类积分方程简化为求解递归关系。通过递归关系,最容易迭代产生近似解。因此,计算数值解不需要解任何代数方程的线性系统。为了显示该方法的收敛性和稳定性,获得了一些可计算的误差范围。数值算例说明了该方法的实用性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号