首页> 外文期刊>Computers & mathematics with applications >Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by Lattice Boltzmann Method
【24h】

Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by Lattice Boltzmann Method

机译:格子盖玻尔兹曼方法在二维盖驱动腔流中的多个稳态解

获取原文
获取原文并翻译 | 示例

摘要

This work is concerned with the computation of two- and four-sided lid-driven square cavity flows and also two-sided rectangular cavity flows with parallel wall motion by the Lattice Boltzmann Method (LBM) to obtain multiple stable solutions. In the two-sided square cavity two of the adjacent walls move with equal velocity and in the four-sided square cavity all the four walls move in such a way that parallel walls move in opposite directions with the same velocity; in the two-sided rectangular lid-driven cavity flow the longer facing walls move in the same direction with equal velocity. Conventional numerical solutions show that the symmetric solutions exist for all Reynolds numbers for all the geometries, whereas multiplicity of stable states exist only above certain critical Reynolds numbers. Here we demonstrate that Lattice Boltzmann method can be effectively used to capture multiple steady solutions for all the aforesaid geometries. The strategy employed to obtain these solutions is also described.
机译:这项工作涉及用莱迪思·玻尔兹曼方法(LBM)计算具有盖壁驱动力的两面和四面两面矩形流以及具有平行壁运动的两面矩形腔,以得到多个稳定解。在两侧的方腔中,两个相邻的壁以相等的速度移动,而在两侧的方腔中,所有四个壁均以这样的方式移动:平行的壁以相同的速度沿相反的方向移动。在两侧矩形盖驱动的腔中,较长的壁以相同的速度沿相同方向移动。常规数值解表明,对于所有几何形状,所有雷诺数都存在对称解,而稳定态的多重性仅存在于某些临界雷诺数之上。在这里,我们证明了格子Boltzmann方法可以有效地捕获所有上述几何形状的多个稳定解。还描述了用于获得这些解决方案的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号