首页> 美国卫生研究院文献>other >Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method
【2h】

Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method

机译:用晶格玻尔兹曼法表征盖驱动腔流的振荡不稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present work, lattice Boltzmann method (LBM) is applied for simulating flow in a three-dimensional lid driven cubic and deep cavities. The developed code is first validated by simulating flow in a cubic lid driven cavity at 1000 and 12000 Reynolds numbers following which we study the effect of cavity depth on the steady-oscillatory transition Reynolds number in cavities with depth aspect ratio equal to 1, 2 and 3. Turbulence modeling is performed through large eddy simulation (LES) using the classical Smagorinsky sub-grid scale model to arrive at an optimum mesh size for all the simulations. The simulation results indicate that the first Hopf bifurcation Reynolds number correlates negatively with the cavity depth which is consistent with the observations from two-dimensional deep cavity flow data available in the literature. Cubic cavity displays a steady flow field up to a Reynolds number of 2100, a delayed anti-symmetry breaking oscillatory field at a Reynolds number of 2300, which further gets restored to a symmetry preserving oscillatory flow field at 2350. Deep cavities on the other hand only attain an anti-symmetry breaking flow field from a steady flow field upon increase of the Reynolds number in the range explored. As the present work involved performing a set of time-dependent calculations for several Reynolds numbers and cavity depths, the parallel performance of the code is evaluated a priori by running the code on up to 4096 cores. The computational time required for these runs shows a close to linear speed up over a wide range of processor counts depending on the problem size, which establishes the feasibility of performing a thorough search process such as the one presently undertaken.
机译:在目前的工作中,采用格子玻尔兹曼方法(LBM)模拟三维盖子驱动的立方腔和深腔中的流动。首先通过模拟在1000和12000雷诺数的立方盖驱动腔中的流动来验证开发的代码,然后我们研究腔深对深度纵横比等于1、2和3的腔中稳态振荡转变雷诺数的影响。 3.使用经典的Smagorinsky子网格比例模型,通过大涡模拟(LES)进行湍流建模,从而为所有模拟提供最佳的网格尺寸。仿真结果表明,第一霍普夫分叉雷诺数与腔深呈负相关,这与文献中二维深腔流动数据的观测结果一致。立方腔显示出稳定的流场,直到雷诺数为2100,延迟的反对称打破振荡场(在雷诺数为2300时),并进一步恢复到对称性,从而在2350时保持振荡流场。另一方面,深腔当雷诺数在所研究的范围内增加时,只能从稳定流场获得反对称破裂流场。由于当前工作涉及对几个雷诺数和腔深度执行一组与时间有关的计算,因此可通过在多达4096个内核上运行代码来对代码的并行性能进行先验评估。这些运行所需的计算时间表明,根据问题的大小,在广泛的处理器数量范围内,加速速度接近线性,这证明了执行彻底的搜索过程(例如目前进行的搜索)的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号