首页> 外文期刊>Journal of visualization >Multi-relaxation time lattice Boltzmann simulations of oscillatory instability in lid-driven flows of 2D semi- elliptical cavity
【24h】

Multi-relaxation time lattice Boltzmann simulations of oscillatory instability in lid-driven flows of 2D semi- elliptical cavity

机译:二维半椭圆腔盖驱动流的振荡不稳定性的多弛豫时间格子Boltzmann模拟

获取原文
获取原文并翻译 | 示例

摘要

In this study, the multi-relaxation-time lattice Boltzmann method is applied to investigate the oscillatory instability of lid-driven flows in two-dimensional semi-elliptical cavities with different vertical-to-horizontal aspect ratios K in the range of 1.0-3.0. The program implemented in this study is parallelized using compute unified device architecture (CUDA), a parallel computing platform, and computations are carried out on NVIDIA Tesla K40c GPU. To carry out precise calculations, the CUDA algorithm is extensively investigated, and its parallel efficiency indicates that the maximum speedup is 47.6 times faster. Furthermore, the steady-oscillatory Reynolds numbers are predicted by implementing the CUDA-based programs. The amplitude coefficient is defined to quantify the time-dependent oscillation of the velocity magnitude at the monitoring point. The simulation results indicate that the transition Reynolds numbers correlate negatively with the aspect ratio of the semi-elliptical cavity and are smaller than those of the rectangular cavity at the same aspect ratio. In addition, the detailed vortex structures of the semi-elliptical cavity within a single period are also investigated when the Reynolds number is larger than the steady-oscillatory value to determine the effects of periodic oscillation of the velocity magnitude.
机译:在这项研究中,采用多重弛豫时间格子玻尔兹曼方法研究了纵横比K在1.0-3.0范围内的二维半椭圆腔中盖驱动流的振荡不稳定性。 。本研究中实现的程序使用计算统一设备架构(CUDA),并行计算平台进行了并行化,并且计算在NVIDIA Tesla K40c GPU上进行。为了进行精确的计算,对CUDA算法进行了广泛的研究,其并行效率表明最大加速速度快了47.6倍。此外,可通过实施基于CUDA的程序来预测稳定振荡的雷诺数。定义振幅系数以量化监视点处速度大小随时间的振荡。仿真结果表明,过渡雷诺数与半椭圆腔的长宽比呈负相关,并且在相同长宽比下比矩形腔小。此外,当雷诺数大于稳态振动值时,还研究了单个周期内半椭圆腔的详细旋涡结构,以确定速度幅值的周期性振荡的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号