首页> 外文期刊>Computers & Graphics >DIMNet: Dense implicit function network for 3D human body reconstruction
【24h】

DIMNet: Dense implicit function network for 3D human body reconstruction

机译:DIMNET:用于3D人体重建的密集隐式功能网络

获取原文
获取原文并翻译 | 示例

摘要

In recent years, with the improvement of artificial intelligence technology, it has become possible to re -construct high-precision 3D human body models based on ordinary RGB images. The current 3D human body reconstruction technology requires complex external equipment to scan all angles of the human body, which is complicated to be implemented and cannot be popularized. In order to solve this problem, this paper applies deep learning models on reconstructing 3D human body based on monocular images. First of all, this paper uses Stacked Hourglass network to perform convolution operations on monocular images collected from different views. Then Multi-Layer Perceptrons (MLPs) are used to decode the en-coded high-level images. The feature codes in the two views(main and side) are fused, and the interior and exterior points are classified by the fusion features, so as to obtain the corresponding 3D occupancy field. At last, the Marching Cube algorithm is used for 3D reconstruction with a specific threshold and then we use Laplace smoothing algorithm to remove artifacts. This paper proposes a dense sampling strategy based on the important joint points of the human body, which has a certain optimization ef-fect on the realization of high-precision 3D reconstruction. The performance of the proposed scheme has been validated on the open source datasets, MGN dataset and the THuman dataset, provided by Tsinghua University. The proposed scheme can reconstruct features such as clothing folds, color textures, and facial details,and has great potential to be applied in different applications. (c) 2021 Elsevier Ltd. All rights reserved.
机译:近年来,随着人工智能技术的改进,已经可以基于普通RGB图像重新计算高精度3D人体模型。目前的3D人体重建技术需要复杂的外部设备来扫描人体的所有角度,这与实现并且不能普及。为了解决这个问题,本文适用基于单眼图像重建3D人体的深度学习模型。首先,本文使用堆积的沙漏网络对不同视图中收集的单像素图​​像进行卷积操作。然后,使用多层的感知(MLPS)来解码所编码的高级图像。两个视图(主和侧)中的特征代码被融合,内部和外部点由融合功能进行分类,以便获得相应的3D占用场。最后,游行多维数据集算法用于特定阈值的3D重建,然后我们使用LAPLACE平滑算法去除伪像。本文提出了一种基于人体重要关节点的密集采样策略,在实现高精度3D重建方面具有一定的优化EF-Fect。拟议方案的表现已在清华大学提供的开源数据集,MGN数据集和Thuman数据集上验证。所提出的方案可以重建衣服折叠,颜色纹理和面部细节等特征,并且具有很大的应用在不同的应用中应用。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号