首页> 外文期刊>Journal of visual communication & image representation >Representing 3D shapes based on implicit surface functions learned from RBF neural networks
【24h】

Representing 3D shapes based on implicit surface functions learned from RBF neural networks

机译:基于从RBF神经网络学习的隐式曲面函数表示3D形状

获取原文
获取原文并翻译 | 示例

摘要

We propose to represent the shape of 3D objects using a neural network classifier. The 3D shape is learned from a neural network, where Radial Basis Function (RBF) is applied as the activation function for each perceptron. The implicit functions derived from the neural network is a combination of radial basis functions, which can represent complex shapes. The use of RBF provides a rotation, translation and scaling invariant feature to represent the shape. We conduct experiments on a new prostate dataset and public datasets. Our testing results show that our neural network -based method can accurately represent various shapes. (C) 2016 Elsevier Inc. All rights reserved.
机译:我们建议使用神经网络分类器来表示3D对象的形状。从神经网络学习3D形状,其中将径向基函数(RBF)用作每个感知器的激活函数。从神经网络派生的隐式函数是径向基函数的组合,可以表示复杂的形状。使用RBF可提供旋转,平移和缩放不变特征来表示形状。我们对新的前列腺数据集和公共数据集进行实验。我们的测试结果表明,基于神经网络的方法可以准确表示各种形状。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号