首页> 外文学位 >RBF neural network based generalized predictive control for nonlinear stochastic systems.
【24h】

RBF neural network based generalized predictive control for nonlinear stochastic systems.

机译:基于RBF神经网络的非线性随机系统的广义预测控制。

获取原文
获取原文并翻译 | 示例

摘要

Almost all practical systems are nonlinear, which are subject to disturbances and contain uncertainties. In most cases, disturbances and uncertainties can be modeled as stochastic processes, which make it necessary to develop controllers for nonlinear stochastic systems.;Due to the disturbances and uncertainties, it is difficult to get the exact model of the nonlinear stochastic systems. Neural network techniques are found to have advantages in system identification. Any unknown function can be approximated to any degree of accuracy by a multiple-layer neural network.;In addition, time delay occurs in many real systems. One of the most effective control methods to reduce the impact of delay on the closed-loop systems is predictive control, which is obtained by predicting the future control to minimize the errors.;A RBF Neural Network based Generalized Predictive Controller (NNGPC) is introduced to control nonlinear stochastic systems. The input-output relationship of a nonlinear stochastic system is approximated by an RBF neural network. A learning algorithm is developed to train the RBF neural network by updating the neural network parameters, such as centers, widths, and weights, either on-line or off-line. The parameters are updated using the modified gradient decent method to minimize a cost function, which is a quadratic function of errors between the real system output and the output from the neural network. Based on the model obtained from the neural network learning algorithm, a multistep-ahead generalized predictive control algorithm is designed to minimize a cost function, which is constructed using future control signals and errors between future references and future outputs estimated from the model. The optimization problem involved in the predictive control is solved using Nelder-Mead method and Quasi-Newton method. The comparison between these two methods is made using simulation results.
机译:几乎所有实际系统都是非线性的,容易受到干扰并具有不确定性。在大多数情况下,可以将干扰和不确定性建模为随机过程,这使得有必要开发非线性随机系统的控制器。由于存在干扰和不确定性,很难获得非线性随机系统的精确模型。发现神经网络技术在系统识别方面具有优势。多层神经网络可以将任何未知函数近似精确到任何程度。此外,在许多实际系统中都会发生时间延迟。减少延迟对闭环系统影响的最有效控制方法之一是预测控制,它是通过预测将来的控制以使误差最小化而获得的。;介绍了一种基于RBF神经网络的广义预测控制器(NNGPC)控制非线性随机系统。非线性随机系统的输入输出关系通过RBF神经网络进行近似。开发了一种学习算法,以通过在线或离线更新神经网络参数(例如中心,宽度和权重)来训练RBF神经网络。使用改进的梯度体面方法更新参数以最小化成本函数,该成本函数是实际系统输出与神经网络输出之间的误差的二次函数。基于从神经网络学习算法获得的模型,设计了一种多步提前广义预测控制算法以最小化成本函数,该算法使用将来的控制信号以及未来参考与模型估计的未来输出之间的误差构造而成。使用Nelder-Mead方法和Quasi-Newton方法解决了预测控制中涉及的优化问题。两种方法之间的比较是使用仿真结果进行的。

著录项

  • 作者

    Xin, Qi.;

  • 作者单位

    Lakehead University (Canada).;

  • 授予单位 Lakehead University (Canada).;
  • 学科 Engineering Biomedical.
  • 学位 M.S.
  • 年度 2013
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号