首页> 外文期刊>Computers & Graphics >Image-based relighting using image segmentation and bootstrap strategy
【24h】

Image-based relighting using image segmentation and bootstrap strategy

机译:使用图像分割和自举策略的基于图像的重新照明

获取原文
获取原文并翻译 | 示例

摘要

Image-based relighting technologies enable us to recover the illumination effects of modeled scenes under new light conditions without complicated geometrical information. However, most of them are troubled by specialized devices and tedious sampling work. In this study, we propose an efficient and accurate image-based relighting method for the estimation of the light transport matrix of modeled scene, starting from a small number of images acquired with a fixed viewpoint and with lighting sampled over a uniform 2D grid. Especially, the image space is segmented based on the position and average color value of each pixel usingK-means. The local coherence among the pixels can be considered to associate with pixel position and pixels’ albedo. The pixels of each cluster can be trained by several neural networks and the training scene datasets can be chosen using the bootstrap strategy. These tricks improve the regression performance. We validate our method with light transport data of several scenes containing complex lighting effects. The obtained results show that the proposed method is useful for practical applications and we can get more plausible rendered images with fewer input images in comparison to related techniques.
机译:基于图像的重新照明技术使我们能够在新的光照条件下恢复建模场景的照明效果,而无需复杂的几何信息。但是,它们中的大多数都受到专用设备和繁琐的采样工作的困扰。在这项研究中,我们提出了一种有效且准确的基于图像的重新照明方法,用于估计建模场景的光传输矩阵,该方法从以固定视点获取的少量图像开始,并在均匀的2D网格上采样照明。尤其是,使用K均值根据每个像素的位置和平均颜色值对图像空间进行分割。可以认为像素之间的局部相干性与像素位置和像素的反照率有关。每个群集的像素可以通过几个神经网络进行训练,并且可以使用自举策略选择训练场景数据集。这些技巧可提高回归性能。我们使用包含复杂照明效果的多个场景的光传输数据验证了我们的方法。所得结果表明,所提出的方法对于实际应用是有用的,并且与相关技术相比,我们可以用更少的输入图像获得更真实的渲染图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号