首页> 外文期刊>ACM Transactions on Graphics >Deep Image-Based Relighting from Optimal Sparse Samples
【24h】

Deep Image-Based Relighting from Optimal Sparse Samples

机译:最佳稀疏样本的基于图像的深度照明

获取原文
获取原文并翻译 | 示例

摘要

We present an image-based relighting method that can synthesize scene appearance under novel, distant illumination from the visible hemisphere, from only five images captured under pre-defined directional lights. Our method uses a deep convolutional neural network to regress the relit image from these five images; this relighting network is trained on a large synthetic dataset comprised of procedurally generated shapes with real-world reflectances. We show that by combining a custom-designed sampling network with the relighting network, we can jointly learn both the optimal input light directions and the relighting function. We present an extensive evaluation of our network, including an empirical analysis of reconstruction quality, optimal lighting configurations for different scenarios, and alternative network architectures. We demonstrate, on both synthetic and real scenes, that our method is able to reproduce complex, high-frequency lighting effects like specularities and cast shadows, and outperforms other image-based relighting methods that require an order of magnitude more images.
机译:我们提出了一种基于图像的重新照明方法,该方法可以仅从在预定义的定向光下捕获的五个图像中合成在可见半球的新型,远距离照明下的场景外观。我们的方法使用深度卷积神经网络从这五张图像中还原出已刷新的图像。此照明网络是在一个大型合成数据集上训练的,该数据集由程序生成的形状具有真实世界的反射率组成。我们表明,通过将自定义设计的采样网络与重照明网络相结合,我们可以共同学习最佳的输入光方向和重照明功能。我们对网络进行了广泛的评估,包括对重建质量的实证分析,针对不同场景的最佳照明配置以及替代网络体系结构。我们在合成和真实场景上都证明了我们的方法能够再现复杂的高频照明效果(例如镜面反射和投射阴影),并且胜过其他基于图像的重新照明方法,后者需要更多数量级的图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号