首页> 外文期刊>Computers & Digital Techniques, IET >Leveraging design diversity to counteract process variation: theory, method, and FPGA toolchain to increase yield and resilience in-situ
【24h】

Leveraging design diversity to counteract process variation: theory, method, and FPGA toolchain to increase yield and resilience in-situ

机译:利用设计多样性来抵消工艺变化:理论,方法和FPGA工具链可现场提高良率和弹性

获取原文
获取原文并翻译 | 示例

摘要

With continued scaling of integrated circuits into deep nanoscale fabrication technologies, the aggravated effects of reliability degradation and variability in process parameters can hinder effective yields. Fortunately, due to the immense flexibility of contemporary reconfigurable hardware (RH), reconfiguration-based resilience can be exploited to effectively tackle such challenges. Nonetheless, reconfiguration-based resiliency is typically limited due to the complexity of the fault resolution space, interconnect routing constraints, and dynamic reconfiguration time in situ. These challenges are addressed herein by deriving a pre-emptive design approach based on union-free hypergraphs, which can define distinct physical implementations with highly separable subsets of the target device's resources covering the largest solution space feasible for reliability exposures and uncertain parametric variations. Two scalable and highly transportable algorithms to realise union-free hypergraphs are introduced and investigated. Hardware demonstration on a commercial-grade field programmable gate array platform shows a significant increase in fault tolerance compared to commonly-used modular redundancy methods. Furthermore, Monte-Carlo statistical results across a set of benchmarks show an average improvement in critical path delay of 6.8, 8.6, and 10.8% for combined variations of 15, 25, and 35%, respectively, while achieving a net reduction in performance variation impact of 34.8, 38, and 41% for identical levels of variability.
机译:随着集成电路不断地扩展到深纳米级制造技术中,可靠性下降和工艺参数可变性的加剧影响可能会阻碍有效的成品率。幸运的是,由于现代可重配置硬件(RH)的巨大灵活性,可以利用基于重配置的弹性来有效应对此类挑战。但是,由于故障解决空间,互连路由约束和原位动态重新配置时间的复杂性,基于重新配置的弹性通常受到限制。本文通过基于无联合超图的先发制人的设计方法来解决这些挑战,该方法可以定义具有目标设备资源的高度可分离子集的独特物理实现,这些子集涵盖了对于可靠性风险和不确定的参数变化而言可行的最大解决方案空间。引入和研究了两种可伸缩且高度可移植的算法来实现无联合超图。与常用的模块化冗余方法相比,在商业级现场可编程门阵列平台上进行的硬件演示表明,容错能力显着提高。此外,针对一组基准的蒙特卡洛统计结果显示,组合变化分别为15、25和35%时,关键路径延迟的平均改善分别为6.8、8.6和10.8%,同时实现了性能变化的净减少相同水平的变异性的影响分别为34.8%,38%和41%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号