首页> 外文期刊>Computer vision and image understanding >Robust tracking of human body parts for collaborative human computer interaction
【24h】

Robust tracking of human body parts for collaborative human computer interaction

机译:健壮的人体部位跟踪,以实现人机协作

获取原文
获取原文并翻译 | 示例

摘要

Visual analysis and tracking of human motion in a video sequence is very useful and was motivated by a wide spectrum of applications for example, surveillance and human computer interaction, The ability to track multiple people and their body parts (i.e., face and hands) in a complex environment is crucial for designing a collaborative natural human computer interaction (HCI). One of the most challenging issue in this context is detecting and tracking body parts of multiple people robustly in an unconstrained environment. More specific problem arises during tracking multiple body parts is the data association uncertainty while assigning measurements to the proper tracks in case of occlusion and close interaction of body parts. This paper describes a framework for tracking body parts (hands and faces) of multiple people in 2D/3D in an unconstrained environment. We use a probabilistic model to fuse the color and motion information to localize the body parts and employ multiple hypothesis tracking (MHT) algorithm to track these features simultaneously. In real world scenes, extracted features usually contains spurious measurements which create unconvincing trajectories and needless computations. To deal with this problem we incorporated a path coherence function along with MHT to reduce the number of hypotheses which in turn reduce the computational cost and improve the structure of the trajectories. The performance of the framework has been validated using experiments on synthetic and real sequence of images. (C) 2003 Elsevier Science (USA). All rights reserved. [References: 41]
机译:对视频序列中的人体运动进行视觉分析和跟踪非常有用,并且受到多种应用程序的激发,例如监视和人机交互,能够跟踪多个人及其身体部位(即面部和手部)的能力。复杂的环境对于设计协作自然人机交互(HCI)至关重要。在这种情况下,最具挑战性的问题之一是在不受限制的环境中稳健地检测和跟踪多个人的身体部位。在跟踪多个身体部位的过程中出现的更具体的问题是数据关联的不确定性,同时在身体部位发生阻塞和紧密相互作用的情况下将测量分配给正确的轨迹。本文介绍了一种在不受约束的环境中以2D / 3D跟踪多个人的身体部位(手和脸)的框架。我们使用概率模型来融合颜色和运动信息以定位身体部位,并采用多重假设跟踪(MHT)算法来同时跟踪这些特征。在现实世界的场景中,提取的特征通常包含虚假的度量,这些伪造的度量会创建令人难以置信的轨迹和不必要的计算。为了解决这个问题,我们结合了路径相干函数和MHT来减少假设的数量,从而减少了计算量并改善了轨迹的结构。该框架的性能已通过使用合成和真实图像序列的实验进行了验证。 (C)2003 Elsevier Science(美国)。版权所有。 [参考:41]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号