首页> 外文期刊>Computer vision and image understanding >Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach
【24h】

Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach

机译:通过少量的点和线对应关系实现可靠的摄像机姿态和校准:一种概率方法

获取原文
获取原文并翻译 | 示例

摘要

We present a new method for solving the problem of camera pose and calibration from a limited number of correspondences between noisy 2D and 3D features. We show that the probabilistic estimation problem can be expressed as a partially linear problem, where point and line correspondences are mixed using a common formulation. Our Sampling-Solving algorithm enables to robustly estimate the parameters and evaluate the probability distribution of the estimated parameters. It solves the problem of pose estimation with unknown focal length using a minimum of only four correspondences (five if the principal point is also unknown). To our knowledge, this is the first calibration method using so few correspondences of both points and lines. Experimental results on minimal data sets show that the algorithm is very robust to Gaussian noise. Experimental comparisons show that our method is much more stable than existing camera calibration methods for small data sets. Finally, some tests show the potential of global uncertainty estimates on real data sets.
机译:我们提出了一种从嘈杂的2D和3D特征之间的有限数量的对应关系解决相机姿态和校准问题的新方法。我们表明,概率估计问题可以表示为部分线性问题,其中点和线的对应关系使用常见公式进行混合。我们的采样求解算法能够可靠地估计参数并评估估计参数的概率分布。它使用最少四个对应关系(如果主点也是未知的,则为五个)解决了焦距未知的姿势估计问题。据我们所知,这是第一种使用很少的点和线对应关系的校准方法。在最小数据集上的实验结果表明,该算法对高斯噪声非常鲁棒。实验比较表明,对于小数据集,我们的方法比现有的摄像机校准方法稳定得多。最后,一些测试显示了对真实数据集进行全局不确定性估计的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号