首页> 外文期刊>Computer vision and image understanding >Object co-segmentation via weakly supervised data fusion
【24h】

Object co-segmentation via weakly supervised data fusion

机译:通过弱监督数据融合进行对象共分割

获取原文
获取原文并翻译 | 示例

摘要

Object co-segmentation aims to simultaneously segment common regions of interest from multiple images. It is of great importance to image classification, object recognition and image retrieval. One way to extract similar objects shared by multiple images is to construct a correlation function between image regions. In this paper, object co-segmentation is addressed based on weakly supervised data fusion. First, we integrate the image boundary information into weakly supervised clustering by adopting an efficient image segmentation algorithm with proved convergence. Feature learning as well as clustering are also incorporated into the proposed algorithm to establish a unified framework so that an optimal feature subspace with clustering-oriented methods is provided. Second, the shared object from multiple images is regarded as the procedure to search objects from heterogeneous data sources, which is formalized as data fusion problems. Using data fusion techniques, we present a novel method to evaluate the similarity between images, which facilitates the use of similar objects from multiple images. Finally, the two proposed object segmentation and co-segmentation algorithms are verified through publicly available datasets MSRA1000 and iCoseg. Experiments demonstrate that both algorithms are capable to achieve superior or comparable performance over the compared state-of-the-art segmentation methods in all tested datasets.
机译:对象共分割旨在从多个图像中同时分割共同感兴趣的区域。这对于图像分类,目标识别和图像检索非常重要。提取由多个图像共享的相似对象的一种方法是构造图像区域之间的相关函数。在本文中,基于弱监督数据融合解决了对象共分割问题。首先,我们通过采用经证明具有收敛性的有效图像分割算法,将图像边界信息集成到弱监督聚类中。特征学习和聚类也被结合到所提出的算法中以建立统一的框架,从而提供具有面向聚类方法的最优特征子空间。其次,来自多个图像的共享对象被视为从异构数据源搜索对象的过程,形式化为数据融合问题。使用数据融合技术,我们提出了一种新颖的方法来评估图像之间的相似性,这有助于使用来自多个图像的相似对象。最后,通过公开可用的数据集MSRA1000和iCoseg验证了所提出的两种对象分割和共分割算法。实验表明,在所有测试数据集中,这两种算法都能够比同类的最新细分方法获得更好或相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号