首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Video Object Discovery and Co-Segmentation with Extremely Weak Supervision
【24h】

Video Object Discovery and Co-Segmentation with Extremely Weak Supervision

机译:具有极弱监督的视频对象发现和协同分段

获取原文
获取原文并翻译 | 示例

摘要

We present a spatio-temporal energy minimization formulation for simultaneous video object discovery and co-segmentation across multiple videos containing irrelevant frames. Our approach overcomes a limitation that most existing video co-segmentation methods possess, i.e., they perform poorly when dealing with practical videos in which the target objects are not present in many frames. Our formulation incorporates a spatio-temporal auto-context model, which is combined with appearance modeling for superpixel labeling. The superpixel-level labels are propagated to the frame level through a multiple instance boosting algorithm with spatial reasoning, based on which frames containing the target object are identified. Our method only needs to be bootstrapped with the frame-level labels for a few video frames (e.g., usually 1 to 3) to indicate if they contain the target objects or not. Extensive experiments on four datasets validate the efficacy of our proposed method: 1) object segmentation from a single video on the SegTrack dataset, 2) object co-segmentation from multiple videos on a video co-segmentation dataset, and 3) joint object discovery and co-segmentation from multiple videos containing irrelevant frames on the MOViCS dataset and XJTU-Stevens, a new dataset that we introduce in this paper. The proposed method compares favorably with the state-of-the-art in all of these experiments.
机译:我们提出了一个时空能量最小化公式,用于跨不包含相关帧的多个视频同时进行视频对象发现和共分段。我们的方法克服了大多数现有视频共分割方法所具有的局限性,即,在处理目标视频不在许多帧中的实际视频时,它们的性能较差。我们的公式结合了时空自动上下文模型,并与用于超级像素标记的外观建模相结合。通过基于空间推理的多实例增强算法,基于哪些像素包含目标对象,超像素级标签将传播到帧级。我们的方法仅需使用几个视频帧(例如通常为1到3个)的帧级标签进行引导,以指示它们是否包含目标对象。在四个数据集上进行的大量实验验证了我们提出的方法的有效性:1)从SegTrack数据集上的单个视频进行对象分割; 2)从视频共分割数据集上的多个视频进行对象分割;以及3)联合对象发现和在MOViCS数据集和XJTU-Stevens(我们在本文中介绍的新数据集)上包含不相关帧的多个视频中进行共同细分。在所有这些实验中,所提出的方法均与最新技术相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号