首页> 外文期刊>Computer Science Education >Evaluating the effect of learning style and student background on self-assessment accuracy
【24h】

Evaluating the effect of learning style and student background on self-assessment accuracy

机译:评估学习方式和学生背景对自我评估准确性的影响

获取原文
获取原文并翻译 | 示例

摘要

This study evaluates a new taxonomy-based self-assessment scale and examines factors that affect assessment accuracy and course performance. The scale is based on Bloom's Revised Taxonomy and is evaluated by comparing students' self-assessment results with course performance in a programming course. Correlation has been used to reveal possible connections between student information and both self-assessment and course performance. The results show that students can place their knowledge along the taxonomy-based scale quite well and the scale seems to fit engineering students' learning style. Advanced students assess themselves more accurately than novices. The results also show that reflective students were better in programming than active. The scale used in this study gives a more objective picture of students' knowledge than general scales and with modifications it can be used in other classes than programming.
机译:这项研究评估了一个新的基于分类法的自我评估量表,并研究了影响评估准确性和课程绩效的因素。该量表基于Bloom的修订分类法,并通过比较学生的自我评估结果与编程课程中的课程表现进行评估。相关已用于揭示学生信息与自我评估和课程绩效之间的可能联系。结果表明,学生可以很好地将其知识按分类法进行分类,该规模似乎符合工科学生的学习风格。高水平的学生比新手更准确地评估自己。结果还表明,反思型学生在编程方面比主动型更好。本研究中使用的量表比一般量表更客观地展示了学生的知识,并且经过修改后,它可以用于编程以外的其他课程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号