首页> 外文期刊>Computer networks >Transfer reinforcement learning-based road object detection in next generation IoT domain
【24h】

Transfer reinforcement learning-based road object detection in next generation IoT domain

机译:下一代IOT域的转移增强基于学习的道路对象检测

获取原文
获取原文并翻译 | 示例

摘要

The landscape of fifth generation (5G) and beyond 5G (B5G)-enabled Internet of Things(IoT) is expected to seamlessly and ubiquitously connect everything, which includes 5G, cloud computing, artificial intelligence and other cutting-edge technologies to realize truly intelligent applications in smart cities. In this paper, we present an important key technology for smart city, which is a road target recognition algorithm for smart city applications and designs a set of corresponding programs to assist automatic drivers, pedestrians and visually impaired people in road safety, or to manage city infrastructure. The system can connect robots in cars, wearable devices and body area network in pedestrians or blind people. A target recognition algorithm based on scene fusion is designed to recognize the specific target in the road environment, and transfer reinforcement learning method is used to improve the accuracy and real-time performance of target recognition. The system provides them with travel assistance, identify dangerous or useful objects for them through high-performance target recognition services. It can collect the road visual scene data by road cameras and transmit it to edge devices for training model. The model is collaborated trained in the edge devices and aggregated by the cloud. Based on the transfer reinforcement learning method, the vision-based road target recognition has been implemented, and the accurate and reliable target recognition can be realized. Many details of experiments verify the effectiveness of our technology.
机译:第五代(5G)和超过5G(B5G)的事物(IOT)的景观预计将无缝且普遍地连接所有内容,包括5G,云计算,人工智能等尖端技术,实现真正智能化的技术智能城市的应用。在本文中,我们为智能城市提供了一个重要的重点技术,是智能城市应用的道路目标识别算法,设计一套相应的程序,以协助自动驾驶员,行人和道路安全人员的人们,或管理城市基础设施。该系统可以将机器人连接到行人或盲人中的汽车,可穿戴设备和身体区域网络中。基于场景融合的目标识别算法旨在识别道路环境中的特定目标,并使用传输增强学习方法来提高目标识别的准确性和实时性能。系统通过高性能目标识别服务向其提供旅行辅助,识别危险或有用的对象。它可以通过公路摄像头收集路观视觉场景数据,并将其传输到培训模型的边缘设备。该模型在边缘设备中培训并由云聚合。基于转印增强学习方法,已经实施了基于视觉的道路目标识别,并且可以实现准确和可靠的目标识别。实验的许多细节验证了我们技术的有效性。

著录项

  • 来源
    《Computer networks》 |2021年第5期|108078.1-108078.12|共12页
  • 作者单位

    Jinan University Guangzhou China;

    Shandong University of Science and Technology Shandong China;

    Research Chair of Pervasive and Mobile Computing King Saud University Riyadh 11543 Saudi Arabia|Department of Software Engineering College of Computer and Information Sciences King Saud University Riyadh 11543 Saudi Arabia;

    Department of Computer Engineering College of Computer and Information Sciences King Saud University Riyadh 11543 Saudi Arabia;

    Department of Computer Science and Engineering Ajay Kumar Garg Engineering College Ghaziabad 201009 India;

    Department of Mathematics Ch. Charan Singh University Meerut India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    5G; Deep learning; Internet of Things; Transfer reinforcement learning;

    机译:5G;深入学习;事物互联网;转移加固学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号