首页> 外文OA文献 >OBJECT DETECTION FROM MMS IMAGERY USING DEEP LEARNING FOR GENERATION OF ROAD ORTHOPHOTOS
【2h】

OBJECT DETECTION FROM MMS IMAGERY USING DEEP LEARNING FOR GENERATION OF ROAD ORTHOPHOTOS

机译:来自MMS图像的对象检测使用深度学习换世代的道路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, extensive research has been conducted to automatically generate high-accuracy and high-precision road orthophotos using images and laser point cloud data acquired from a mobile mapping system (MMS). However, it is necessary to mask out non-road objects such as vehicles, bicycles, pedestrians and their shadows in MMS images in order to eliminate erroneous textures from the road orthophoto. Hence, we proposed a novel vehicle and its shadow detection model based on Faster R-CNN for automatically and accurately detecting the regions of vehicles and their shadows from MMS images. The experimental results show that the maximum recall of the proposed model was high – 0.963 (intersection-over-union > 0.7) – and the model could identify the regions of vehicles and their shadows accurately and robustly from MMS images, even when they contain varied vehicles, different shadow directions, and partial occlusions. Furthermore, it was confirmed that the quality of road orthophoto generated using vehicle and its shadow masks was significantly improved as compared to those generated using no masks or using vehicle masks only.
机译:近年来,已经进行了广泛的研究,以便使用从移动映射系统(MMS)获取的图像和激光点云数据自动生成高精度和高精度道路正轨。然而,有必要在MMS图像中掩盖诸如车辆,自行车,行人及其阴影的非公路物体,以消除来自道路的错误纹理。因此,我们提出了一种基于更快的R-CNN的新型车辆及其阴影检测模型,用于自动,准确地检测车辆区域及其从MMS图像的阴影。实验结果表明,所提出的模型的最大召回是高0.963(交叉汇率> 0.7) - 并且该模型可以准确且强大地从MMS图像中准确且鲁棒地识别车辆区域及其阴影,即使它们含有各种各样的情况车辆,不同的阴影方向和部分闭塞。此外,与使用没有面罩的人相比,使用车辆和其暗影面罩产生的道路耳脊柱的质量显着提高,或者仅使用车辆掩模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号