首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features
【24h】

Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features

机译:基于形状建模,随机林分类器和专用视觉功能的矢状X射线检测椎体角

获取原文
获取原文并翻译 | 示例

摘要

Quantitative measurements of spine shape parameters on planar X-rays is critical for clinical applications, but remains tedious and with no fully automated solution demonstrated on the whole spine. This study aims to limit manual input, while demonstrating precise vertebrae corners positioning and shape parameter measurements from sagittal radiographs of the cervical and lumbar regions, exploiting novel dedicated visual features and specialised classifiers. A database of manually annotated X-rays is used to train specialised Random Forest classifiers for each spine region and corner type. An original combination of local gradient characteristics, Haar-like features and contextual features based on patch intensity and contrast is used as visual features. The proposed method is trained and evaluated on 109 sagittal X-rays of asymptomatic and pathological subjects, from multiple imaging sites, and with a large age range (6-69 years old). Performance is first evaluated for positioning a 2D spine shape model, where precisely detected corners enable to adjust the model via an original multilinear statistical regression. Root-mean-square errors of corners localisation and vertebra orientations are reported, demonstrating state-of-the-art precision compared to existing methods, but with minimal manual input. The method is then evaluated for the extraction of additional vertebrae shape characteristics, such as vertebral centre positioning, endplate centres positioning and endplate length measures, rarely studied in previous literature. The proposed method enables, with minimal initialisation, fast and precise individual vertebrae delineations on sagittal radiographs of normal and pathological cases, with a precision and robustness level required for objective support for diagnosis and therapy decision-making.
机译:平面X射线上脊柱形状参数的定量测量对于临床应用至关重要,但在整个脊柱上仍然没有完全自动化的解决方案仍然繁琐。本研究旨在限制手动输入,同时展示精确的椎体角落定位和形状参数测量从颈椎和腰部区域的矢状射线照片,利用新颖的专用视觉特征和专业的分类器。手动注释的X射线数据库用于为每个脊柱区域和角型培训专门的随机林分类器。使用局部梯度特性,类似于贴片强度和对比度的哈尔样功能和上下文特征的原始组合用作视觉特征。培训和评估所提出的方法,并从多个成像网站上培训并评估了109个无症状和病理受试者的X射线,并且具有较大的年龄范围(6-69岁)。首先评估性能以定位2D脊柱形状模型,其中精确地检测到的角落能够通过原始多线性统计回归来调整模型。报告了拐角定位和椎体取向的根均方误差,与现有方法相比,展示了最先进的精确度,但是手动输入最小。然后评估该方法,用于提取另外的椎骨形状特性,例如椎体定位,端板中心定位和端板长度措施,很少在先前的文献中研究。该方法使得能够最小的初始化,快速和精确的单个椎骨描绘正常和病理情况的矢状射线照片,客观支持诊断和治疗决策所需的精确性和稳健性等级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号