首页> 外文期刊>Computer methods in biomechanics and bio >Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features
【24h】

Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features

机译:基于形状建模,随机森林分类器和专用视觉特征的矢状X射线椎骨角检测

获取原文
获取原文并翻译 | 示例

摘要

Quantitative measurements of spine shape parameters on planar X-rays is critical for clinical applications, but remains tedious and with no fully automated solution demonstrated on the whole spine. This study aims to limit manual input, while demonstrating precise vertebrae corners positioning and shape parameter measurements from sagittal radiographs of the cervical and lumbar regions, exploiting novel dedicated visual features and specialised classifiers. A database of manually annotated X-rays is used to train specialised Random Forest classifiers for each spine region and corner type. An original combination of local gradient characteristics, Haar-like features and contextual features based on patch intensity and contrast is used as visual features. The proposed method is trained and evaluated on 109 sagittal X-rays of asymptomatic and pathological subjects, from multiple imaging sites, and with a large age range (6-69 years old). Performance is first evaluated for positioning a 2D spine shape model, where precisely detected corners enable to adjust the model via an original multilinear statistical regression. Root-mean-square errors of corners localisation and vertebra orientations are reported, demonstrating state-of-the-art precision compared to existing methods, but with minimal manual input. The method is then evaluated for the extraction of additional vertebrae shape characteristics, such as vertebral centre positioning, endplate centres positioning and endplate length measures, rarely studied in previous literature. The proposed method enables, with minimal initialisation, fast and precise individual vertebrae delineations on sagittal radiographs of normal and pathological cases, with a precision and robustness level required for objective support for diagnosis and therapy decision-making.
机译:平面X射线对脊柱形状参数的定量测量对于临床应用至关重要,但仍然很繁琐,并且没有在整个脊柱上展示出全自动解决方案。这项研究旨在限制手动输入,同时通过利用新颖的专用视觉功能和专门的分类器,从颈椎和腰椎区域的矢状X射线照片展示精确的椎骨角定位和形状参数测量。手动注释的X射线数据库用于训练每种脊椎区域和拐角类型的专用“随机森林”分类器。基于补丁强度和对比度的局部梯度特征,类似Haar的特征和上下文特征的原始组合被用作视觉特征。对来自多个成像部位且年龄范围较大(6-69岁)的109例无症状和病理受试者的矢状X射线进行了训练和评估。首先评估2D脊柱形状模型的性能,在该模型中,精确检测到的角可以通过原始的多线性统计回归来调整模型。报告了角点定位和椎骨方向的均方根误差,与现有方法相比,它显示了最先进的精度,但是手动输入最少。然后评估该方法以提取其他椎骨形状特征,例如椎体中心定位,终板中心定位和终板长度度量,这在以前的文献中很少研究。所提出的方法能够以最小的初始化在正常和病理情况的矢状X线照片上快速而精确地描绘单个椎骨,并为诊断和治疗决策提供客观支持所需的精确度和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号